ud185

Tips

  • 回归问题和二元分类问题经常使用均方损失

  • 前向传播

  • 计算损失

  • 反向传播得到梯度

  • 更新权重(使用优化器)

创建一个分类器

from torch import nn, optim
import torch.nn.functional as F

class Classifier(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(784, 256)
        self.fc2 = nn.Linear(256, 128)
        self.fc3 = nn.Linear(128, 64)
        self.fc4 = nn.Linear(64, 10)

    def forward(self, x):
        # make sure input tensor is flattened
        x = x.view(x.shape[0], -1)

        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = F.log_softmax(self.fc4(x), dim=1)

        return x

#model = nn.Sequential(nn.Linear(784, 128),
#                      nn.ReLU(),
#                      nn.Linear(128, 64),
#                      nn.ReLU(),
#                      nn.Linear(64, 10),
#                       nn.LogSoftmax(dim=1))

验证分类器

model = Classifier()
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.parameters(), lr=0.003)

epochs = 30
steps = 0

train_losses, test_losses = [], []
for e in range(epochs):
    running_loss = 0
    for images, labels in trainloader:

        optimizer.zero_grad()

        log_ps = model(images)
        loss = criterion(log_ps, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()

    else:
        test_loss = 0
        accuracy = 0

        # Turn off gradients for validation, saves memory and computations
        with torch.no_grad():
            for images, labels in testloader:
                log_ps = model(images)
                test_loss += criterion(log_ps, labels)

                ps = torch.exp(log_ps)
                top_p, top_class = ps.topk(1, dim=1)
                equals = top_class == labels.view(*top_class.shape)
                accuracy += torch.mean(equals.type(torch.FloatTensor))

        train_losses.append(running_loss/len(trainloader))
        test_losses.append(test_loss/len(testloader))

        print("Epoch: {}/{}.. ".format(e+1, epochs),
              "Training Loss: {:.3f}.. ".format(running_loss/len(trainloader)),
              "Test Loss: {:.3f}.. ".format(test_loss/len(testloader)),
              "Test Accuracy: {:.3f}".format(accuracy/len(testloader)))

过拟合

  • 早停法 (early stopping) 即:使用验证损失最低的模型,需要频繁保存模型。

  • 丢弃(dropout)即随机丢弃单元

    • self.dropout = nn.Dropout(p=0.2)

      class Classifier(nn.Module):
          def __init__(self):
              super().__init__()
              self.fc1 = nn.Linear(784, 256)
              self.fc2 = nn.Linear(256, 128)
              self.fc3 = nn.Linear(128, 64)
              self.fc4 = nn.Linear(64, 10)
      
              # Dropout module with 0.2 drop probability
              self.dropout = nn.Dropout(p=0.2)
      
          def forward(self, x):
              # make sure input tensor is flattened
              x = x.view(x.shape[0], -1)
      
              # Now with dropout
              x = self.dropout(F.relu(self.fc1(x)))
              x = self.dropout(F.relu(self.fc2(x)))
              x = self.dropout(F.relu(self.fc3(x)))
      
              # output so no dropout here
              x = F.log_softmax(self.fc4(x), dim=1)
      
              return x

      验证的时候关闭dropout, 先使用model.eval()设定为推理模式,计算测试损失和精度后再开启模型训练model.train()启动dropout

              # Turn off gradients for validation, saves memory and computations
              with torch.no_grad():
                  model.eval() #set up to eval not use dropout
                  for images, labels in testloader:
                      log_ps = model(images)
                      ...
      
              model.train() # set up to train with dropout

保存和加载网络模型

  • torch.savetorch.load

  • PyTorch 网络的参数保存在模型的 state_dict 中。状态字典包含每个层级的权重和偏差矩阵

torch.save(model.state_dict(), 'checkpoint.pth')
state_dict = torch.load('checkpoint.pth')
model.load_state_dict(state_dict)
  • 将状态加载到神经网络中需要执行 model.load_state_dict(state_dict)

    • 只有模型结构和检查点的结构完全一样时,状态字典才能加载成功

  • 可以将模型的架构信息和状态字典都保存在检查点里,可以通过创建一个字典来实现

    checkpoint = {'input_size': 784,
                  'output_size': 10,
                  'hidden_layers': [each.out_features for each in model.hidden_layers],
                  'state_dict': model.state_dict()}
    
    torch.save(checkpoint, 'checkpoint.pth')
    
    def load_checkpoint(filepath):
        checkpoint = torch.load(filepath)
        model = fc_model.Network(checkpoint['input_size'],
                                 checkpoint['output_size'],
                                 checkpoint['hidden_layers'])
        model.load_state_dict(checkpoint['state_dict'])
    
        return model
    
    model = load_checkpoint('checkpoint.pth')
  • 再次加载模型的时候使用load_checkpoint函数即可正确完成

加载图像数据

data_dir = 'Cat_Dog_data/train' # 数据集所在目录
# 数据转换,缩放、裁剪,然后转换为张量
transform = transforms.Compose([transforms.Resize(255),
                                 transforms.CenterCrop(224),
                                 transforms.ToTensor()])
# 加载数据集
dataset = datasets.ImageFolder(data_dir, transform=transform)
# use the ImageFolder dataset to create the DataLoader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)

# 测试数据加载器
images, labels = next(iter(dataloader))
helper.imshow(images[0], normalize=False)

数据增强

训练神经网络的一个常见策略是在输入数据本身里引入随机性。例如,你可以在训练过程中随机地旋转、翻转、缩放和/或裁剪图像。这样一来,你的神经网络在处理位置、大小、方向不同的相同图像时,可以更好地进行泛化。

train_transforms = transforms.Compose([transforms.RandomRotation(30),
                                       transforms.RandomResizedCrop(224),
                                       transforms.RandomHorizontalFlip(),
                                       transforms.ToTensor(),
                                       transforms.Normalize([0.5, 0.5, 0.5], 
                                                            [0.5, 0.5, 0.5])])

另外,还需要使用 transforms.Normalize 标准化图像。传入均值和标准偏差列表,然后标准化颜色通道

迁移学习

  • 加载 DenseNet 等模型 model = models.densenet121(pretrained=True)

# Freeze parameters so we don't backprop through them 冻结特征层
for param in model.parameters():
    param.requires_grad = False
  • 测试GPU是否可用

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    PyTorch 和其他深度学习框架一样,也使用 CUDA 在 GPU 上高效地进行前向和反向运算。在 PyTorch 中,你需要使用 model.to('cuda') 将模型参数和其他张量转移到 GPU 内存中。你可以使用 model.to('cpu') 将它们从 GPU 移到 CPU,比如在你需要在 PyTorch 之外对网络输出执行运算时。

    model.to(device)
    for epoch in range(epochs):
        for ii, (inputs, labels) in enumerate(trainloader):
            # Move input and label tensors to the default device
            inputs, labels = inputs.to(device), labels.to(device)

Review

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import matplotlib.pyplot as plt

import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
from torchvision import datasets, transforms, models
from collections import OrderedDict

data_dir = 'Cat_Dog_data'

# Define transforms for the training data and testing data
train_transforms = transforms.Compose([transforms.RandomRotation(30),
                                       transforms.RandomResizedCrop(224),
                                       transforms.RandomHorizontalFlip(),
                                       transforms.ToTensor(),
                                       transforms.Normalize([0.485, 0.456, 0.406],
                                                            [0.229, 0.224, 0.225])])

test_transforms = transforms.Compose([transforms.Resize(255),
                                      transforms.CenterCrop(224),
                                      transforms.ToTensor(),
                                      transforms.Normalize([0.485, 0.456, 0.406],
                                                           [0.229, 0.224, 0.225])])

# Pass transforms in here, then run the next cell to see how the transforms look
train_data = datasets.ImageFolder(data_dir + '/train', transform=train_transforms)
test_data = datasets.ImageFolder(data_dir + '/test', transform=test_transforms)

trainloader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True)
testloader = torch.utils.data.DataLoader(test_data, batch_size=64)


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = models.densenet121(pretrained=True)

for param in model.parameters():
    param.requires_grad = False

model.classifier = nn.Sequential(OrderedDict([
                          ('fc1', nn.Linear(1024, 500)),
                          ('relu', nn.ReLU()),
                          ('fc2', nn.Linear(500, 2)),
                          ('output', nn.LogSoftmax(dim=1))
                          ]))

criterion = nn.NLLLoss()
optimizer = optim.Adam(model.parameters(), lr=0.003)
model.to(device);

epochs = 30
steps = 0
running_loss = 0
print_every = 5
train_losses, test_losses = [], []

for epoch in range(epochs):

    for images, labels in trainloader:
        steps += 1

        images, labels = images.to(device), labels.to(device)

        optimizer.zero_grad() # clearing the gradients

        log_ps = model(images)
        loss = criterion(log_ps, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()

        if steps %% print_every == 0:
            model.eval() # set the network to evaluation mode
            test_loss = 0
            accuracy = 0
            for images, labels in testloader:

                images, labels = images.to(device), labels.to(device)

                logps = model(images)
                loss = criterion(logps, labels)
                test_loss += loss.item()

                # calculate our accuracy
                ps = torch.exp(logps)
                top_ps, top_class = ps.topk(1, dim=1)
                equality = top_class == labels.view(*top_class,shape)
                accuracy += torch.mean(equality.type(torch.FloatTensor)).item()
                running_loss = 0
                model.train() # back to training mode

            print("Epoch: {}/{}.. ".format(e+1, epochs),
                  "Training Loss: {:.3f}.. ".format(running_loss/len(trainloader)),
                  "Test Loss: {:.3f}.. ".format(test_loss/len(testloader)),
                  "Test Accuracy: {:.3f}".format(accuracy/len(testloader)))

Last updated